CLERKING PATIENTS WITH RESPECT TO CLINICAL BIOMECHANICS

Andy Horwood

Podiatric Innovations Limited Product Designer at Healthy Step Ltd Visiting Fellow Staffordshire University WHY DO WE CLERK OUR PATIENT?

- A DIAGNOSIS & A MECHANISM OF INJURY:
- PROCESSES & PATHWAYS: SOAPIER/ SIN / OLDCARTS
- ASSESSING BODY SYSTEMS: CRAG-CELS
- APPROACHING THE PATIENT: GETTING THE RIGHT ANSWERS
- BIOMECHANICAL PRINCIPLES OF CLERKING: STRESS-STRAIN RELATIONSHIP
- ASSESSING THE TISSUES MECHANICALLY FOR DIAGNOSIS

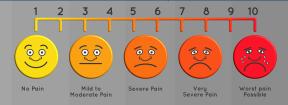
ACRONMY OR ANACRONISM?

• HELP OR HINDERANCE?

PROCESSES & PATHWAYS

TREATMENT PATHWAYS OR RAMBLES

- DIAGNOSIS: an absolute datum point! BAD E.G.s
- MECHANISM OF INJURY: the route to treatment!
- STRUCTURED TREATMENT PLAN: Rx

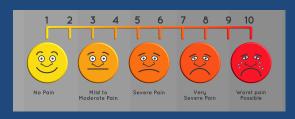


SOAPIER (USEFUL FOR RECENTLY TRAINED)

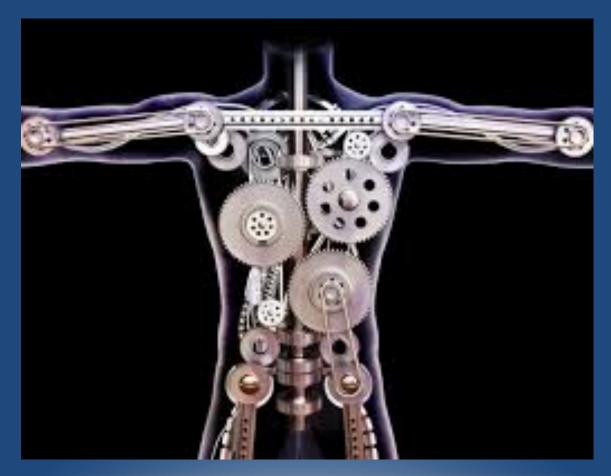
- SUBJECTIVE......What the patient reports.
- OBJECTIVE......What we see, examine and record.
- ANALYSIS......What we diagnose from the the above.
- PLAN......What we are going to do about it.
- Intervention......The treatment we are going to apply.
- Evaluation......Check what we have done seems effective.
- Re-evaluation....Did our intervention work!

BIO-PSYCHO-SOCIAL MODEL OF CARE

95


ARS SALUTARIS SCIENTIA

SIN & OLDCART (S)


- Severity......how bad is the symptom/problem
- Irritability.....how easily is it set off.
- Nature.....everything else about the condition
- 1. Onset.....problem history!
- 2. Location....one finger test.
- 3. Duration.....symptom patterns.
- 4. Character....burning, stabbing, throbbing, aching, radiating etc.
- 5. Aggravating/improving factors......VERY USEFUL.
- 6. Radiating/referred.....relative description of location (one finger test).
- 7. Temporal Patterns......daily pain patterns, usually established on duration.
- 8. SEVERITY AGAIN!

ASSESSING THE BODY SYSTEMS

CLERKING SYSTEMS

- USE THE MEDICAL SYSTEMS (CRAG-CELS)
- 1. Cardiovascular; heart disease, vascular diseases, anemia
- 2. Respiratory; COPD, Asthma
- 3. Alimentary; IBS, Crohn's,
- 4. Genitourinary; Reiter's
- 5. Central Nervous System; Parkinson's
- 6. Endocrine; Diabetes
- 7. Locomotor; Osteoarthritis
- 8. Skin; psoriasis,

Step • Don't forget to consider age!

APPROACHING THE PATIENT

• TRY AND RECORD THE PATIENT NOT YOUR OWN VIEW

"Considering the obvious lies on your information form and my tendency to misdiagnose, we should get along just fine."

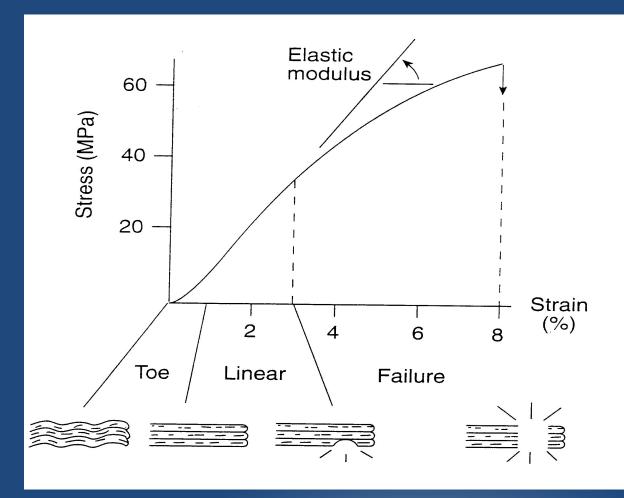
CLERKING TECHNIQUES: USING THE RIGHT QUESTIONS

- 1. CLOSED QUESTION; definite answer. "Where does it hurt"?
- 2. OPEN QUESTIONS; invites explanation. "When does it hurt"?
- 3. LEADING QUESTIONS; searching (not leading). "Is the heel pain present all the day"? "Does it hurt most when you first stand up?"
- 4. PROBING QUESTIONS; "Why do you think the pain is linked to your work"?

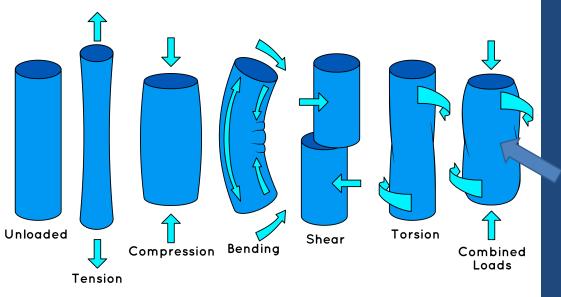
"I already diagnosed myself on the Internet. I'm only here for a second opinion."

THE SALUTARIS SCIENTIA

BEING A GOOD LISTENER


• The patient should tell you the most likely diagnosis which you only need to confirm.

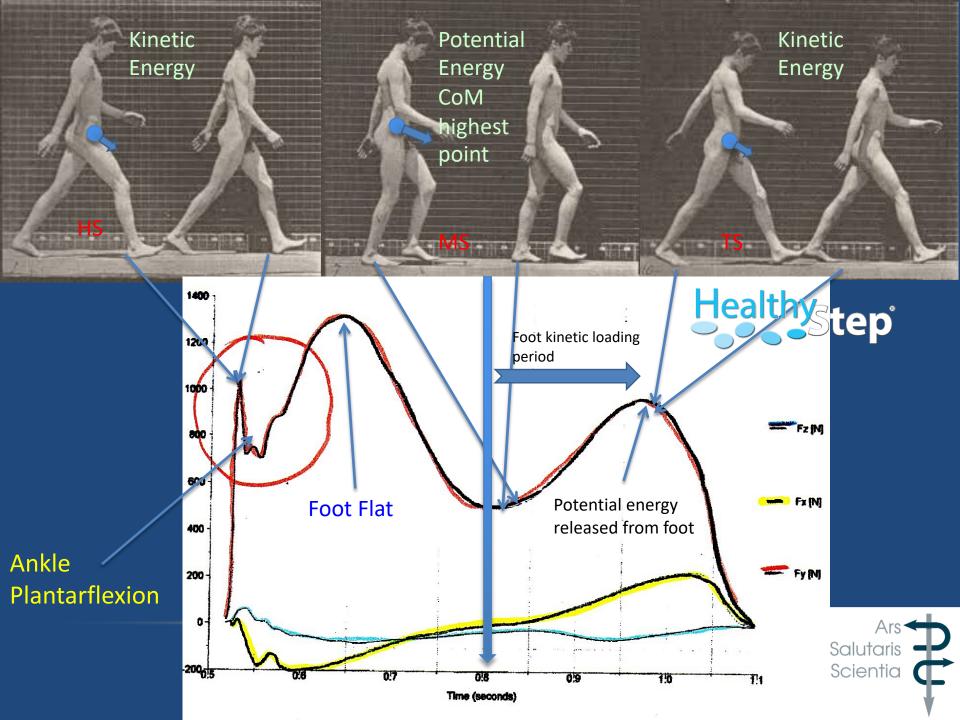
"You have to learn about thousands of diseases, but I only have to focus on fixing what's wrong with ME! Now which one of us do you think is the expert?"


ASSESSING THE STRESS-STRAIN RELATIONSHIP

ARE SALUTARIS SCIENTA

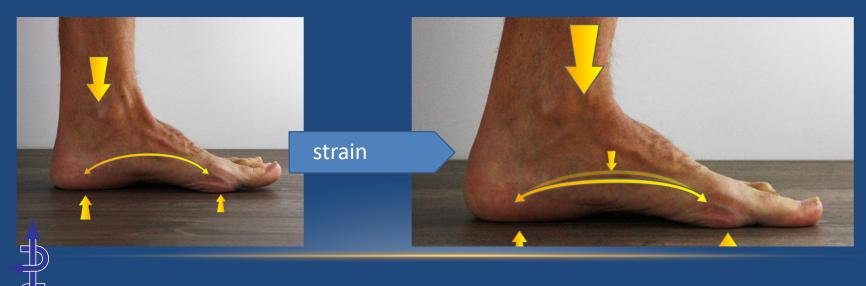
IS THE PATIENTS STRESS STRAIN RELATIONSHIP NORMAL?

STRESS & STRAIN


Stress is force in system. Strain is deformation.

All the types of strain bodies are put under.

The 2% (3%) strain in connective tissue (fascia) returned as potential energy!


Arch drop is foot strain (deformation).

STRAIN = DEFORMITY = WORK DONE

FOOT CONVERTS KINETIC ENERGY INTO POTENTIAL ENERGY

IF strain deformation too great = lost energy = poor energetics = HIGHER POTENTIAL INJURY RISK

ARS SALUTARIS SCIENTIA

WHICH FOOT IS THE LESS MECHANICALLY EFFICIENT?

PRINCIPLES OF BIOMECHANICAL CLERKING PATIENTS

Associate or disassociate the information from the symptoms. Do we have:?

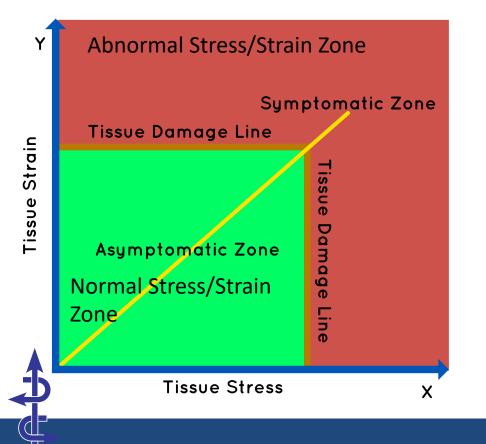
Normal Stresses on Normal Tissues.= Normal Strain.

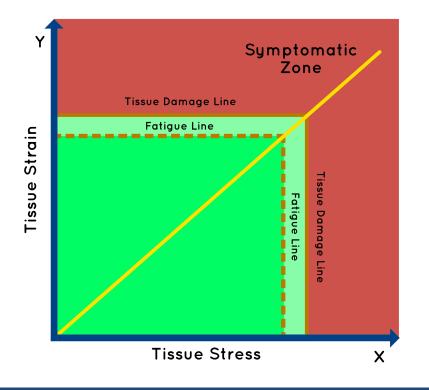
The symptoms unlikely to have a biomechanical cause.

- 1. Abnormal Stresses on Normal Tissues.
- 2. Normal Stresses on Abnormal Tissue.
- 3. Abnormal Stresses on Abnormal Tissue.

PAIN IS A FUNNY OLD THING! NORMAL STRESS ON NORMAL TISSUES

- Should not be related to mechanical causes.
- Can have biomechanical effects, but not cause.
- 1. Infections; verrucae, Reiter's, Lyme's Disease, etc.
- 2. Tumors; Fibromatosis, lipomas, osteomas, etc. (hopefully not sarcomas)
- 3. Inflammatory; Rheumatoid arthritis, psoriatic arthritis, Reiter's etc.
- 4. Foreign objects; glass, thorns, metal shards, hairs, spines etc.
- 5. Environmental mismatch. Vit D₃ deficiency, poor work posture/footwear, etc.
- 6. FATIGUE
- Hypersensitivity (fibromyalgia, psychosocial conditions).




NORMAL TISSUE STRESS & STRAIN RELATIONSHIP

NORMAL HEALTHY TISSUE

ARS SALUTARIS SCIENTIA

FATIGUE REDUCES TISSUE STRENGTH

ABNORMAL (NEW) STRESS/ NORMAL TISSUES

- Normal healthy individual exposed to an abnormal stress;
- Tissues either adapt or injure to new stress.
- 1. STRESS TOO HIGH FOR TISSUES = INJURY
- 2. STRESS NEAR MAXIMAL TOLLERENCE REPEATED FOR TOO LONG (tissue fatigue). (Runners, dancers, etc. and obesity),

TISSUE CONDITIONING

INCREASES PROTECTION

In gradual onset symptoms look for abnormal alignment/motions in gait that might focus stresses into the relevant tissue.

NORMAL STRESS / ABNORMAL TISSUES

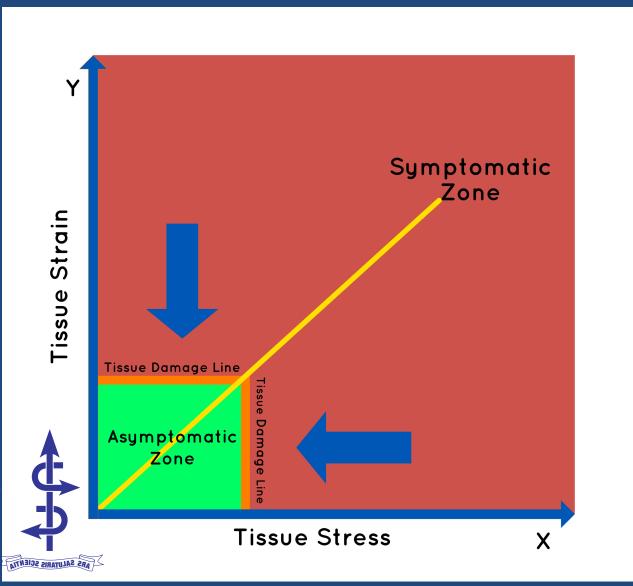
- Normal motion in gait, but the tissues are incapable of dealing with normal activity stresses.
- Diabetics. (glycosylation)
- Connective tissue disorders.
- Cardiovascular/alimentary diseases/respiratory. (tissue nutrition)
- Previously-injured tissues. (poorly healed tissues)
- THE ELDARLY. (weakness/atrophy/hormonal changes)

Kinematics, kinetics and alignment may appear normal:

but the tissues can't tolerate normal.

ABNORMAL STRESS / ABNORMAL TISSUES

• The tissues are abnormal and do not stress normally under normal stress, but are now subjected to abnormal stress.


- Any injured tissue repeated subjected to abnormal stress.
- Any tissue carrying pathology subjected to abnormal stress.
- Any degenerated tissue subjected to abnormal stress.
- Any aged tissue subjected to abnormal stress.

Abnormal kinematics/kinetics and alignments in gait and stance expected.

INJURY SEVERITY INFLUENCES EXAMINATION

INJURED TISSUE DOES NOT BEHAVE LIKE NORMAL TISSUE

ASSESSING THE TISSUES MECHANICALLY FOR DIAGNOSIS

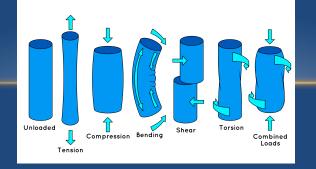
ESSENTIAL FOR ESTABLISHING THE DIAGNOSIS

CONS

PROS

- DIAGNOSTIC IMAGING. Sensitivity V.Good. Selectivity variable
- CLINICAL EXAMINATION. Sensitivity OK. Selectivity Pretty Good
- Palpation.
 Sensitivity Good.
 Selectivity Poor
 Cyriax.
 Sensitivity Good.
 Selectivity Good

Confirms diagnosis (Pellechia et al, 19966; Greenwood et al, 1998) effective in lower limb (Howard, 2000)


CYRIAX APPROACH

- Different tissues do different things.
- Different structures tend to be injured by specific stress/strain relationships. Most tissues are anisotropic.

EXAMPLES:

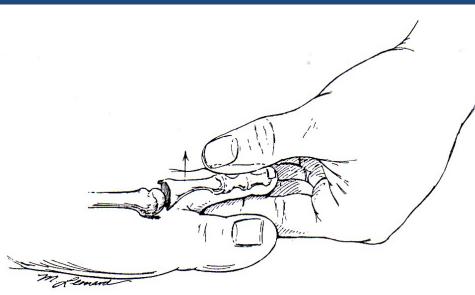
- Joint surfaces = compression / shear under compression
- Tendons, fascia (aponeuroses) = tension / torque under tension
- Bone = torque / torque under tension.
- Muscles = under isometric or concentric contraction
- Nerves = under compression / compression under tension.

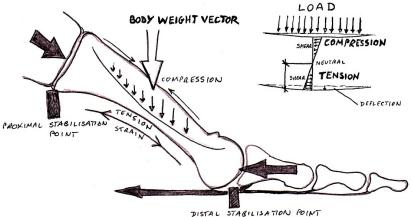
CYRIAX APPROACH TO EXAMINATION

- Distinguish deltoid ligament strain from a tibialis posterior grade I tendinopathy in medial ankle pain after an eversion ankle sprain?
- Distinguish a flexor plate mechanism dysfunction from a pre-stress (fatigue) fracture in 2nd metatarsal head metatarsalgia?
- 3. Distinguish a medial collateral ligament strain from a medial compartment DJD in the knee causing medial knee pain?

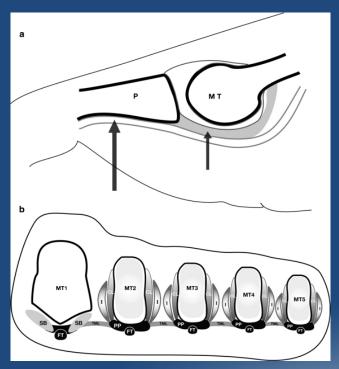
TIBIALIS POSTERIOR ACTIVE INVERSION

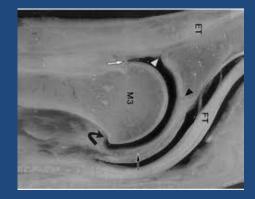
DELTOID PASSIVE EVERSION




REALLY WEAK/PAINFUL TIBIALIS POSTERIOR

FLEXOR PLATE INJURY OR METATARSAL PRE-STRESS FRACTURE?


HealthyStep



TESTING FLEXOR PLATE INTEGRITY

DORSAL STRESS TEST (draw test)

Yanks = vertical stress test

- Grade 0 stable (no pain)
- Grade 0 stable (with pain)
- Grade 1 subluxation
- Grade 2 dislocation
- Grade 3 fixed dislocation

High Sensitivity 98% positive for pain. Klein et al, (2013)

KNEE COMPRESSION / LIGAMENT TENSION STRESS TESTS

Varus medial compression/lateral tension

Valgus lateral compression/medial tension

FAILURE IN CLERKING AND EXAMINATION LEADS TO MANAGED NEGLECT

ADVERT

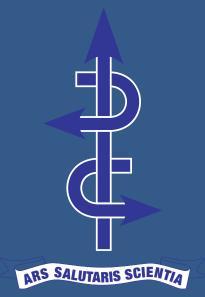
University Accredited Continuing Professional Development (CPD)

Biomechanics, Gait Analysis Podopaediatrics

Please visit:

http://blogs.staffs.ac.uk/staffsbiomech/ post-graduate-and-continuing-professionaldevelopment/

Or contact:


Dr Helen Branthwaite h.r.branthwaite@staffs.ac.uk

For more information on all our postgraduate modules and MSc in Clinical Biomechanics

THANK YOU

- References:
- Greenwood MJ, Erhard RE, Jones DL (1998). Differential diagnosis of the hip Vs lumber spine: five case reports. *Journal of Orthopaedic and Sports Physical Therapy*. 27(4): 308-315.
- Howard PD (2000). Differential diagnosis of calf pain and weakness: flexor hallucis longus strain. Journal of Orthopaedic and Sports Physical Therapy. 30(2): 78-84.
- Klein EE, Weil L, Weil LS, Coughlin MJ, Knight J. (2013) Clinical examination of plantar plate abnormality. *Foot & Ankle International.* 34(6): 800-804.
- Pellechia GL, Paolino J, Connell J (1996). Intertester reliability of the Cyriax evaluation in assessing patients with shoulder pain. Journal of Orthopaedic and Sports Physical Therapy. 23(1): 34-38.

